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Observing stochastic resonance in an underdamped bistable Duffing oscillator
by the method of moments

Yan-Mei Kang,* Jian-Xue Xu,† and Yong Xie‡

Institute for Nonlinear Dynamics, School of Architectural Engineering and Mechanics, Xi’an Jiaotong University, Xi’an 710049, C
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The method of moments is applied to an underdamped bistable oscillator driven by Gaussian white noise and
a weak periodic force for the observations of stochastic resonance and the resulting resonant structures are
compared with those from Langevin simulation. The physical mechanisms of the stochastic resonance are
explained based on the evolution of the intrawell frequency peak and the above-barrier frequency peak via the
noise intensity and the fluctuation-dissipation theorem, and the three possible sources of stochastic resonance
in the system are confirmed. Additionally, with the noise intensity fixed, the stochastic resonant structures are
also observed by adjusting the nonlinear parameter.
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I. INTRODUCTION

The conventional stochastic resonance~SR! is referred to
as a synchronization phenomenon in an overdamped bis
system between the noise-induced transition and the exte
weak signal@1–3#. As the research on SR carried on in va
ous directions, many interesting and meaningful results h
been obtained nearly in every field, especially in the fields
neural information transmission@4–9# and signal processing
@10–13#, etc. Most of the results in these systems follow t
conventional SR mechanism, whether the two stable att
tors are static or dynamic.

Additionally, there exists a new type of SR in the und
damped monostable system@13,14#, due to the approximate
coincidence between the lowest-energy eigenfrequency
the drive frequency, which has been pointed out as a gen
phenomenon in all underdamped nonlinear oscillators.
fonsi et al. @15# named this new type of SR intrawell SR
while they called the conventional SR interwell SR, realiz
numerically the double stochastic resonant structure in
underdamped bistable oscillator by investigating the evo
tion of the spectral amplitude at the driven frequency via
noise intensity, and concluded that both stochastic re
nances coexist only when the forcing frequency takes va
within a narrow range around the unperturbed character
frequency at the bottom of the wells. Since the fluctuat
underdamped bistable oscillator has many applications s
as in laser generation, passive optical transmission or fo
oscillation of an electron in a Penning trap, and so on@16#,
the stochastic resonant behavior of this underdam
bistable oscillator will be investigated further from the view
point of linear response in this review.

Since the direct simulation about stochastic system
always time consuming, there have been several theo
techniques developed in the research on SR, such as l
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response theory@2,16#, adiabatic approximation@17#, eigen-
function expansion@18#, etc. Among these the linear re
sponse theory has been proven to be a powerful tool, ba
on which some approximate methods have been propo
such as the matrix continuous fraction method@19# and the
method of moments@20,21#, etc. As far as the method o
moments is concerned, Dykmanet al. @20# first used it to
investigate the effect of fluctuations on resonance nonlin
response of an underdamped monostable oscillator. T
Evstigneevet al. @21# presented a modified moment metho
to calculate the linear and nonlinear susceptibilities of
ensemble of biased overdamped oscillator and got no
resonant phenomena. Since the method of moments
simple and convenient tool, our concern is what will occur
the modified method is applied in observing the SR in
underdamped bistable oscillator. To our knowledge, th
have been a few studies~see Refs.@22,23#! on the SR in this
system at the theoretic level, but they are based on adiab
approximation, which requires the slowly varying period
force ~i.e., the drive frequencyV!1) and weak noise inten
sity. In addition, the theoretic results in Refs.@22,23# only
considered the interwell relaxation dynamics, so only
conventional SR was disclosed. But the dynamic charac
istic of the system is more complex than the interwell rela
ation dynamic, so using the method of moments we expec
disclose more general resonant results, which might be
ful in the preceding applications or in signal processing.

The paper is organized as follows. In Sec. II, the meth
of moments for linear susceptibility is introduced. In Sec. I
the spectral amplification factors are calculated both from
method of moments and from Langevin equation simulati
so that the resonant structures derived from the two meth
are compared and the applicability of the method of m
ments is analyzed. In Sec. IV, the dependence of the
trawell frequency peak and the above-barrier frequency p
on the noise intensity is investigated, and the physi
mechanisms of the resonant structure are analyzed base
the fluctuation-dissipation theorem. In Sec. V, the SR
duced by the nonlinear parameter is presented. In Sec.
the conclusions are drawn.
©2003 The American Physical Society23-1
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II. THE METHOD OF MOMENTS FOR LINEAR
SUSCEPTIBILITY

We consider the driven underdamped bistable oscilla
modeled by the following Langevin equation:

ẍ1g ẋ2ax1bx35e~ t !1j~ t !, ~1!

where e(t) is a weak periodic force,a.0 and b.0 are
parameters such that the system is bistable,g.0 is the
damping coefficient, andj(t) is Gaussian white noise with
correlation function̂ j(t1t)j(t)&52Dgd(t). Hered(•) is
the Dirac function andD is the noise intensity.

Let p(x,y,t) denote the phase probability density of sy
tem ~1! at time t with y5 ẋ, and then the Fokker-Planc
equation for the phase probability density is

]p

]t
5Dg

]2p

]y2
2

]~yp!

]x
1

]$@gy2ax1bx32e~ t !#p%

]y
~2!

with p(x,y,t) obeying natural boundary conditions atx→
6` or y→6`.

Let G(x,y) be an arbitrary function of coordinatesx and
y, and suppose that the corresponding time-dependent
ment of the coordinates

~3!

exists. Then by multiplying the two sides of Eq.~2! with
G(x,y) and integrating it by means of the partial integrati
formula and the natural boundary conditions, we obtain
evolution equation for the moment^G&,

d^G&
dt

5DgK ]2G

]y2 L 1 K y
]G

]x L
2 K @gy2ax1bx32e~ t !#

]G

]y L . ~4!

For the sake of calculating susceptibility, we takee(t)
5«e2 iVt into account. According to Floquet’s theory@3#, the
asymptotic solution of Eq.~2! is time periodic and has th
same period as the external force. We assume«!1 and seek
the asymptotic probability in linear response backgrou
@20,21,24# as

pas~x,y,t !5p0~x,y!1p1~x,y!«e2 iVt, ~5!

wherep0(x,y) is the stationary probability density of syste
~1! in the case ofe(t)50. It is well known that

p0~x,y!5Z21e$2(1/D)[1/2y22(a/2)x21(b/4)x4] %, ~6!

whereZ is a normalization constant. It can be easily induc
from the normalization property of the probabilityp(x,y,t)
that
03612
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~7!

With formula ~5! substituted into formula~3! and Eq.~4!,
respectively, and using the orthogonality of trigonomet
functions, we derive the following:

^G&as5^G&01^G&1«e2 iVt, ~8!

DgK ]2G

]y2 L
0

1 K y
]G

]x L
0

2 K ~gy2ax1bx3!
]G

]y L
0

50,

~9!

2 iV^G&15DgK ]2G

]y2 L
1

1 K y
]G

]x L
1

2 K ~gy2ax1bx3!
]G

]y L
1

1 K ]G

]y L
0

~10!

with

Since every continuous function can be approximated
the sum of polynomials, with the boundary conditions tak
into account we let

p1~x,y!5p0~x,y!(
k50

`

(
j 50

k

ck, j x
j yk2 j , ~11!

where coefficientsck, j are unknown. Substitution ofG(x,y)
with the ordinary moment functions

G~x,y!5xmyl ,m,l 50,1,2, . . . ~12!

and insertion of expansion~11! into formula~7! and Eq.~10!
yield a infinite-dimensional linear algebraic system forck, j
as follows:

(
k50

`

(
j 50

k

ck, j^x
jyk2 j&050,
3-2
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(
k51

`

(
j 50

k

$m^xm1 j 21yk2 j 1 l 11&02 l ~g^xm1 j yk2 j 1 l&0

2a^xm1 j 11yk2 j 1 l 21&01b^xm1 j 13yk2 j 1 l 21&0!

1Dg l ~ l 21!^xm1 j yk2 j 1 l 22&0

1 iV~^xm1 j yk2 j 1 l&02^xjyk2 j&0^x
myl&0!%ck, j

52 l ^xmyl 21&0 ~13!

with m,l 50,1,2, . . . .
In order to solve this linear system~13!, we must make a

truncation onk. We take

p1~x,y!'p0~x,y!(
k50

N

(
j 50

k

ck, j x
j yk2 j ~14!

and m and l satisfying (m1 l )<N into account, then the
infinite-dimensional system changes into a finite-dimensio
linear algebraic system. The truncated linear system is so
numerically using LSARG where the concerned station
momentŝ •&0 are estimated by the routine QDAGI of MS
IMSL math function library.

Since«!1 is supposed, by the linear response theory
quantity

~15!

is the linear susceptibility, which describes the long tim
ensemble-averaged response of system~1! to a weak force of
frequencyf d5V/2p in the sense of the first-order harmon
@20,21,24,25#. If we takee(t)5« cos(Vt) into account, then
from formulas ~8! and ~15! and the relationx(2V)
5x(V) ~the overline represents conjugate operation! the re-
sponse approximately readŝx(t)&as5«ux(V)ucos(Vt1f)
with f52arctan@Im x(V)/Re x(V)#. Here Rex(V) and
Im x(V) represent the real part and the imaginary part
x(V), respectively. Another quantityux(V)u2, the spectral
amplification factor for the first order harmonic, is often us
as a measurement for the stochastic resonant behavior.
the method of moments, we calculate the spectral amplifi
tion factor from formulas~14! and ~15!.

III. SPECTRAL AMPLIFICATION FACTOR AND THE
APPLICABILITY OF THE METHOD OF MOMENTS

Since the susceptibility from the method of moments
related toN, the order for truncation, the accuracy of th
calculated spectral amplification factor is also affected byN.
If numerical error is not of concern, the largerN is, the more
accurate the results are. However, whenN is large to an
extent, the coefficient matrix of the linear algebraic syste
is ill-conditioned, which makes the efficiency of a line
solver become important, and certain methods, such as
Gaussian elimiation procedure, are found to be inefficie
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FIG. 1. The spectral amplification factor via the noise intens
the method of moments~solid! and Langevin simulation~dot!. The
parametersa51.0, b51.0, g50.1 andf d is ~a! 0.2, ~b! 0.16, ~c!
0.12, ~d! 0.05.
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FIG. 2. The spectral amplification factor via the noise intens
the method of moments~solid! and Langevin simulation~dot!. The
parametersa51.0, b51.0, g50.05 andf d is ~a! 0.19, ~b! 0.15, ~c!
0.1, ~d! 0.05.
03612
Even with a more efficient linear solver, such as LSARG,
unbounded increase ofN still results in a lack of smoothnes
in the resonant curves. Along with the poor condition of t
system, the rounding error in the concerned higher-order
ments^ &0 might be a cause. By observing the spectral a
plification factor via the noise intensity, we see that althou
all stochastic resonant peaks have appeared in the cas
N53 for larger damping coefficient, such asg50.1, their
heights or locations have evident variations up toN511. We
also observe that for a smaller damping coefficient, such
g50.05, the convergence of the resonant curves can be
served only whenN is much larger, for example,N523.
Below we present the dependence of the spectral amplifi

:

FIG. 3. A time series of coordinates consists of three types
motions~up! and the SDF~down! with a51.0, b51.0, g50.1, and
D50.13. The vertical dashed lines mark the locations of the n
zero frequency SDF peaks, from the left to the right they are
overbarrier spectral peak and the intrawell vibration spectral pe

FIG. 4. The SDF with parametersa51.0, b51.0, g50.1, and
D is 0.01~solid!, 0.05 ~dashed!, 0.15 ~dotted!, 0.5 ~dash-dotted!.
3-4
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OBSERVING STOCHASTIC RESONANCE IN AN . . . PHYSICAL REVIEW E68, 036123 ~2003!
tion factor on the noise intensity withN513 in Fig. 1 and
N519 in Fig. 2, respectively.

To check the accuracy of the method of moments,
compare the results of the method of moments with thos
Langevin simulation of system~1!. On the basis of the linea
response theory, the susceptibilityx(V) can also be found in
terms of the fluctuation-dissipation theorem~FDT!
@13,20,25#

Re x~V!5
2

D
PE

0

1`

dv
v2Q0~v!

v22V2
, ~16!

Im x~V!5
pV

D
Q0~V!. ~17!

HereQ0(v) is the spectral density of fluctuations~SDF! of
the coordinatesx of the system in the absence of the period
force andP implies the Cauchy principal part. In the simu
lation, we use Runge-Kutta fourth-order routine and Bo
Mueller algorithm@26# to integrate Eq.~1! in the absence o
the periodic force using the steplengthnt50.005. We take
10 000 data points in one sample with the sample freque
f s5100 Hz and apply Welch’s periodogram method to 50
1000 such samples to get the SDF. Then we use the Hil
transform to calculate integration~16!. The results~with a

FIG. 5. The peak frequencies vs noise intensity with parame
a51.0, b51.0, e(t)50 and g is ~a! 0.1, ~b! 0.05. The upper
branches represent the intrawell frequency peak, the lower repre
the overbarrier frequency peak, and the solid curves show the
frequency with larger spectral amplitude.
03612
e
of

-

cy

rt

scale acted on! of Langevin simulation are also plotted i
Figs. 1 and 2.

From Figs. 1~b!–1~c! and Figs. 2~a!–2~d! we can see tha
the resonant structures of the method of moments and th
of Langevin simulation not only have the same number
the resonant peaks, but have almost the same peak loca
for given parameters. But forg in zero limit ~the plots are
omitted!, we see that although the resonant curves from
method of moments~whenN521! exhibit almost the same
shapes as the curves from Langevin simulation, the form
has not attained its convergence, and withN further in-
creased, numeric rounding error can induce redundant p
in the resonant structure.

rs

ent
ak

FIG. 6. Langevin simulation results in terms of the FDT f
the parametersa51.0, b51.0, g50.1, «50.0, andf d50.16. ~a!
The spectral amplitude of the SDF at the drive frequency via
noise intensity;~b! the real part of the susceptibility via the nois
intensity; ~c! the imaginary part of the susceptibility via the nois
intensity.
3-5
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IV. THE PHYSICAL MECHANISMS OF THE RESONANT
STRUCTURE

The curves in Figs. 1 and 2 show us that for certain dr
frequencies, there might exist double resonant peaks at
ferent noise intensity. What we want to know exactly is f
which drive frequencies and why a double resonant struc
occurs. In the SDF of the underdamped monostable osc
tor, there is a sharp spectral peak riding over the smo
Lorenz spectrum of the background noise. Lindneret al.
called the frequency where the maximum spectral amplit
is observed as the natural frequency peak, and disclosed
the response of the underdamped monostable oscillato
maximized when the natural frequency peak is shifted to
drive frequency by the noise@27,28#. Compared with the
underdamped monostable oscillator, the SDF of the un
damped bistable oscillator has a more complex structure.
existence of bistability of the potential energy results in th
different types of motions and thus there are three dist
peaks in the distribution of the SDF within a certain para
eter range@29–31#, as shown in Figs. 3 and 4. The zer
frequency peak is due to jumps between wells, the peak c
to the unperturbed eigenfrequency at the bottom of the w
is due to vibrations near the well bottom, and the mid
peak is due to the vibrations over the barrier. Below we re
to the two frequencies where the two nonzero-freque
spectral peaks are observed as the intrawell frequency
and the above-barrier frequency peak, respectively. The
pendence of the intrawell frequency peak and the abo
barrier frequency peak on the noise intensity is shown in F
5. The figures show us that as the noise intensity increa
the intrawell frequency peak descends from unpertur
characteristic frequency at the bottom of the wells till disa
pearance, while the above-barrier frequency peak cont
ously ascends from a value larger that zero. Moreover,
solid curves tell us that the intrawell vibration dominat
when the noise intensity is lower, and the above-barrier
bration overwhelms it when the noise intensity becom
larger and the system response becomes more like that o
underdamped monostable oscillator. Since the intrawell
quency peak and the above-barrier frequency peak, jus
the natural frequency peak, are noise tunable, we infer

FIG. 7. The peak frequencies vs nonlinear coefficient witha
51.0, g50.1, e50.0, andD50.1. The upper branch represen
the intrawell frequency peak, the lower represents the overba
frequency peak, and the solid curve shows the peak frequency
larger spectral amplitude.
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the evolution of the two nonzero-frequency spectral pe
via the noise intensity is important for the understanding
nonconventional SR in the system under consideration.

Now let us turn to the FDT. If the two branches of Fig.
cross the drive frequency twice, thenQ0(V) as a function of
D has two maxima, and then the quantity Imx(V) has two
sharp peaks at the noise intensities a little less than the n
intensities whereQ0(V) attains its maxima; while from
simulations we know the quantity Rex(V) successively
passes a minimum and a maximum at noise intensities
than the noise intensities where Imx(V) takes its maxima.
But in this case,ux(V)u2 has the shape ofQ0(V) with nearly
the peak locations. Therefore, we see that the noncon
tional double structure can occur in the system when
intrawell frequency peak and the above-barrier freque

er
ith

FIG. 8. Spectral amplification factor vs nonlinear coefficient
the method of moments~solid! and Langevin simulation~dot!. The
parametersa51.0, g50.1, andD50.1 andf d is ~a! 0.16,~b! 0.12,
~c! 0.05.
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OBSERVING STOCHASTIC RESONANCE IN AN . . . PHYSICAL REVIEW E68, 036123 ~2003!
peak are shifted to the drive frequency twice, as seen f
Figs. 1 and 2~a!. However, from Figs. 1 and 2~b!, we see that
even if only the above-barrier frequency peak is shifted
the drive frequency, double resonant structure might still
observed. The occurrence of the second peak in Figs. 1
2~b!, as the single peak in Figs. 1 and 2~c!, is due to the
overbarrier vibration, but the occurrence of the first pe
needs special remark. From Fig. 6, we see that although
quantityQ0(V) or Im x(V)) is monopeak, Rex(V) has a
minimum when the noise is weak and it is the minumum t
make the major contribution to the first resonant peak in F
1~b!. With the analysis of formula~16! and the structure o
SDF for different noise intensity we infer that the first pe
is a result of the occurrence of the overbarrier vibration
low-frequency band when the noise is weak, which ag
results from the noise-induced slowing down of the intraw
vibration near the top of the barrier@31#. Therefore, for the
drive frequency that ranges from the least overbarrier
quency peak to the unperturbed characteristic frequenc
the bottom of the wells, one can expect a double reson
structure with the first resonant peak becoming more pro
nent as the drive frequency more approximates the un
turbed characteristic frequency at the bottom of the we
This is consistent with the conclusion in Ref.@15#. Moreover,
from the above analyses, we see the double resonant p
are both associated with the intrawell or the overbarrier
brations, so they both are nonconventional SR. But
above-barrier vibration was taken for the interwell jump
@15#, so that the second resonant peak associated with it
thought of as the conventional SR behavior. In fact, the c
ventional SR behavior is due to the interwell jump, who
relaxation time can be tuned to match the drive freque
@22,23# as for standard overdamped systems, and the con
tional SR is connected with the zero-frequency spectral p
of the system@13#, as plotted in Figs. 1 and 2~d!. Therefore,
there are three sources of SR in the system and our ana
confirms this.

V. SR INDUCED BY PARAMETER

Since the structure of the SDF of system~1! is related
with its potential shape, we can shift the intrawell frequen
-
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peak and the above-barrier frequency peak by adjusting
system parameter, for example, by changing the nonlin
coefficient. With the noise intensity fixed, the dependence
the two nonzero frequency peaks on the nonlinear coeffic
is plotted in Fig. 7. Obviously, the behavior of two frequen
peaks in this case is similar to that in Figs. 5~a! and 5~b!. So
the previously presented structures of SR can be obse
again, as shown in Figs. 8~a!–8~c!. It has been thought@12#
that in the application of the phenomenon of SR to sig
processing, the noise intensity is not always a tunable qu
tity; contrarily, the system parameters might be altered. Th
the SR induced by the nonlinear parameter might have
portance in signal processing. Additionally, with the oth
parameters fixed, the increase of the damping coeffic
weakens both the intrawell vibration and the overbarrier
bration, so that the nonconventional double resonant p
induced by the damping coefficient cannot occur. The furt
results are omitted here.

VI. CONCLUSIONS

In order to demonstrate the accuracy of the method
moments for the observation of SR in the periodically driv
stochastic underdamped bistable oscillator, the spectral
plification factor is calculated both from the method of m
ments and from Langevin simulation. When the damp
coefficient is not in zero limit, good agreement is found b
tween the results obtained using the two methods.

Based the dependence of the intrawell frequency peak
the above-barrier frequency peak of the SDF of the sys
on the noise intensity and the FDT, the three sources of
SR in the system are confirmed and the physical mechan
of the double resonant structures is analyzed. With the n
intensity fixed, the SR induced by the nonlinear paramete
also observed. The resonant structure when the damping
efficient is in zero limit will be studied in the future.
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